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Abstract—The paper presents a numerical technique for a higher-order linear theory for isotropic
plates [see Blocki (1992). Int. J. Solids Structures 29(7), 825-836], whereby the natural frequencies
of free vibration of a circular “moderately™ thick disc of varying thickness profile may be determined
when the disc is subjected to the centrifugal loading. The in-plane stress level, arising from rotational
effects, is determined by means of a spline interpolation technique. The results of the analysis are
compared with the other numerical solutions for thin and moderately thick circular plates.

I. INTRODUCTION

It is well known that the classical thin plate theory neglects the transverse shear strain. So,
the solution based on this theory underestimates the deflection and overestimates the natural
frequencies. Nevertheless, the obtained results, for the plates of thickness to span ratios less
than 0.05 arc acceptable for most engincering applications. For thick plates, a theory which
considers the shear effect should be used. The aim of this paper is to present numerical
results of a new modet of the higher-order lincar theory for isotropic circular “*modcrately™
thick plates [see Blocki (1992)]. The results of the analysis arc compared with the other
numerical solutions for thin and moderately thick plates and the exact values obtained by
using the frequency equation derived by Mindlin and Deresiewicz (1954).

2. FORMULATION OF THE PROBLEM

Let us suppose that the coordinate system (0, X)) with the origin 0 at the centre of
mass of the disc is motionless and inertial. For the region of disc B the local set of coordinates
is associated 0. The dependence between the local and global sets of coordinates is:

X = R0
The local non-inertial set of coordinates for the disc is (0, r, ¥, x,). This set is rotating with

the disc with the angular velocity around the axis of revolution X,.
Having the sets of local coordinates we can define the regions 8:

B=TIx(=hh),
where & is the thickness of the disc and [T is the middle plane of the disc.

2.1. Model of the disc
The discs are made of the Hook material

T =CxE, n

where C is the tensor of elasticity and E is the Green deformation tensor.
The displacements of the plate at the coordinates (r,, x,) can be expressed in the
form [from Part [ of this paper, Blocki (1992)]:
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]

X,
Ugy = u«?x +xl(pd1 + E_ de- (1 = r-d’)~ Uy = “3]- (2)

where

8 cuf,
o = — o (1=0.50 9 4, ),
h- cr

. 8“ 0.5v) f‘u(‘,’,+ a
Lav = /1: —U.oV r{«,w Dy ) 3)
In matrix notation:
ud(r' '1/‘ xl) = Ud(r' '1[,' Xy )q‘((’- ll/).
uy = col (uy,. ty,. tg)).
qu = col (ug,, tg, . 1y Py, Pyay). (4)
('1

1 0 a - Xy +a 0
or

Udz (1 . (5)
0 1 urﬂ:// 0 Xy ta

wherec a = — (8x/h6)(1 —0.5v).

2.2, Equations of motion
In order to find an approximate solution of the free vibration of the disc the Hamilton
principle could be used :

()'J\:(I‘T—-)f")dl=J:()'(‘/f')dl, (6)

1 i

where &, i and #" are clastic and kinctic encrgies

~

A’:O.SJ Cx(E®E)dV. ./‘:0.5Jp.uudu (7)
I

B

d#" is the variation of external work
oW = J p.boudV
I

where b is the tensor of body forces.

2.2.1. The elastic energy. The Green deformation tensor for the thick disc in two-
dimensional theory can be written:
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E &y &

Ey & By
£y &y O

E=

for the Hook material we obtained the elastic energy

R 2
£ = 0.5J J el Kegr drdo, 8)
W Jo TS
where
I—v? [—v"
vE E
K= | 1=V 1=V
5Ghi6
SGhi6
L Gh |
&g = 00l (5. 8ya Err s by 1 Erg b
where
23
i i :
£ =t X0+ 3 . i=(r, ).
0 xi
Epy = &y +x!~""nﬁ + ii Heys
5 2, Y
£y = é[i - ( *}‘:) ]ﬂ.oh
Y= Juy, JOr, £y = Qugylr O +ugylr,
£y = Otigy [Or + Oty [r W — gy /1,
e = Cug for+ @y, £5y = lug/r Y+ @y,
a2y = 0Py [dr, £y = Cog[r oY+ @yfr,
Ly = OPuy[Or+ 2y, [r EY — @y,
B = OAa /O My = Cay/r O + L /1,
Hep = Oy [O7 + O Jr O — Yy /1.
2.2.2. The kinetic energy. The kincetic encrgy can be written as:

R 2
N = O.SJ‘ J; ng qur dr d¢, (9}

where
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_ 0.0 0
Qo = €Ol (Ugy . Ugy - Ugy s Prs Py Xars X )«

h -
h
h
h’ h’
12 480
M=p W "
12 480
h h
480 16128
h® W
480 16128

2.2.3. The external work. The variations of external work 6 # ~caused by the rotatory
motion can be written in the form

R ("2
S, :J J Aaq9qq,. (10)
o i)
where
I ]
h
0
n' I
12 480
1] 5
Ag = 0.5/).01 h - h
12 480
h? W'
T 480 16128
h’ n
L 480 16128 |

The dependence between q,, and gy can be found from eqn (3):

q = Qqq,
where
B
1
|
1
Q= L
0
aia
(ﬁ
i a, —;Fl; aL
8

a, = — /;:é(l —0.5\').
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qQ = COI (ugr' ugi' u«?l » Pdrs (Pd&)v

0,0 0
@y = €Ol (Ug,, Usy, Ug)s Pars Pavs Xars Xav)-

2.2.4. The stresses in the middle plane of the disc. The additional strain energy in
bending due to initial in-plane stress 1,4, 1,5 caused by the static components of centrifugal

force is
R 2n au‘“)z (au‘“ )2
Adc ——O.SJ:D J; [N’(_bT +N9 W fdfd¢, (“)

hi 2 h/2
N, = T,.0 dxl, Nw = T*o dxl.

~h/2 ~h/2

where

The stresses t,. T, in radial and angular directions are calculated by means of a spline
interpolation technique (Irie ef al., 1979 ; Rzadkowski, 1990).

2.3. The functional of the problem
The functional of the problem can be written as:

0P = 5[(&, ~Ty=Aua+Ay)dt = 0. (12)

The parameters describing vibration of the disc ug,, ugy, 13y, @4, @4y Were approximated
by

C K K
Li=Y Y our)(a.sinky+by, cos ky)sinpt = Y Ay(a sin ky +b cos ky) sin pt,
j=lk=| k=1

(13)

where @, (r) are the eigenfunctions of the cantilever beam. For example:

C K
Uy =Y Y @uis(r)(ay sin ky +b, cos ky)sin pt,
j=l k=] R

Q. = [cosh ¢;(r—ro)/(R—ro)—cos ¢;(r—rg)/(R—rg)]
—a,[sinh ¢;(r—ro) —sin ¢;(r—ro)/(R—ry)}, coshe,cosc,+1 =0,
a, = (cos ¢, +cosh ¢,)/(sin ¢, +sinh ¢,),
Qusrj = Sin z,(r—ro)/(R—ry),
Puayi = {(r=ro)/(R=rg), j=0, cosz,(r—rg)/(R=ro), j=1,...,k},
z, = (2j— /2.

Substituting eqns (8)-(11) and (13) into (12) we obtain
(K—p*M)y =0.

3. NUMERICAL RESULTS

The presented theory is a higher-order plate theory by comparison with the Mindlin
theory. In order to compare the numerical results obtained by these two theories the natural
frequencies for the simplified theory, which is equivalent to the Mindlin plate theory, were
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Table 1. Eigenvalues of a free-clamped annular uniform “moderately™
thick plate v=03,=r, R=02.h, R=01.p =078 10 kg m™*,
E=02710"Nm ' m=0

Blocki theory 2258 5463 %.97 11.84

Simplified theory 2254 5427 8.87 11.777
Mindlin and Deresiewicz (1954) 2.254 5413 8.828 11.782
Classical 2276 5683 9.70 13.656

Table 2. Comparison of non-dimensional natural frequencies. for a static “*'moder-

ately™ thick plate. 4,/R = 0.1, r,’R = 0.2, v = 0.3, A, 'h, = 0.5. Upper values are

those obtained from Ritz analysis, lower values those obtained from Irie e ul.
(1980b). Modem =0p =078 [0'kgm L E=002710""Nm~* v=0.3

Linear 2.281 5.034 8.022  Blocki
2.279 5.0HL 7.963  lnie er al. (1980).
Exponential 2243 4.938 7.885

2.241 4916 T.R28

Lincar & = hy, (1 —=(1 —=h /WD (r—r ) (R —r,).
Exponential h = h,(h, /h,)" =70 Fomd

also calculated. For simplificd theory the displacements of the plate at the coordinates
(r.. x,) can be expressed in the form:

0 i
Uy, = Uy, + X000, (2 =rp).

Uy = ":l'l' (14)

The eigenvalues of free vibration of a free-clamped uniform “moderately™ thick plate were
shown in Table |. Upper values are those obtained by the author, middle values those
obtained from the simplified theory (eqn [4), lower exact values were obtained by using
the frequency equation derived by Mindlin and Deresiewicz (1954),

In Table I, the cigenvalues of the “moderately™ thick plate were also compared with
the value obtained by the classical theory, in which ncither the rotatory inertia nor the shear
deformation were taken into account (Iric ¢ al., 1980a). In general, the eigenvalues of
Mindlin plate are smaller than those obtained by the classical theory. The results of Mindlin
theory are smaller than those of Blocki theory. The ltast conclusion confirms the results
presented by Niordson (1979). The difference between natural frequencies obtained by
Mindlin and Blocki theories decreases when the ratio i1,/ R decreases.

Table 2 shows the cigenvalues of a stationary “moderately™ thick plate (h,/R = 0.1)
of varying thickness. Upper values are those obtained from this analysis, lower values thosc
obtained from Iric er «l. (1980b) for the Mindlin plate.

Tables 3 and 4 present the numerical results for thin plates.

Table 3 presents the non-dimensional natural frequencies for a thin plate (h,/R = 0.01),
of variable profile, h = h,(1 —f}(r/b)) for various valucs of f = ry/R. The upper values are
those obtained by the author, middle values those obtained from the finite element method
by Kennedy and Gorman (1977) and lower valucs those obtained from Soni and Amba-
Rao (1975) who applied a Chebyshev collocation method.

Table 4 shows the cigenvalues of a rotating thin (/i,/ R = 0.02) uniform disc. The valucs
in the first column are those obtained from this analysis, in the sccond those obtained from
Iric et al. (1979).

4. CONCLUSIONS

Numerical techniques have been developed which enable the natural frequencies of a
clamped circular disc to be evaluated for any thickness variation when the disc is subjected
to rotation. Convergence of the technique is examined for a varying number of numerical
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Table 3. Comparison of non-dimensional natural frequenc-
ies. for a static thin disc (h,/R = 0.01) of variable profile,
h = hy (1= B(r.b)) for various values of B upper values are
those obtained from Ritz analysis., middle values those
obtained from the finite element method by Kennedy and
Gorman (1977) and lower values those obtained from Soni
and Amba-Rao (1975). Mode m=0, n=0 and m=0.
n=1,p=07810"kgm ", E=020710"Nm = v=03,
R=0202m.Q=0.4y,=aw, 12l —v3)pb* Ehi. ro,/R = 0.1

m=0 m=90
B n=0 n=1

0.7 40271 17.7651 Blocki
4.0317  17.7218 Kennedy and Gorman (1977)
39848  17.4941 Soniand Amba-Rao (1975)

0.5 3978 200111
3.9871  20.0185
9.9565 198647

0.3 40368 221474
4.0501  22.1851
4.0209 22,0155

0.1 41502 241950
41670 24.2585
41321 24.0323

Table 4. Comparison of non-dimen-
sional natural frequencies, of a free-
clamped rotating uniform thin disc,
values in the hrst column are those
obtained from this analysis, in the
second those obtained from Irie et al.
(1979), @ = 1901.64, (§2 = 0.1). The
geometrical parameters of the dise are:
ro=00254d m, R, =0.127 m, h, =
0.00254 wm, h =h, p =078 10" kg
moCE = 020710 Nmo v =03,
Q= 0.1 = 21 ~v)E(hd) (g’ Ry,
Iyl Ry =002, ry/Ry=f=02 i'=
whoRIp gD, Dy = Ehy[12(1 —v?)

Author  Iric et al. (1979)

Jon 3.0049 2,994
A 6.2023 6.1%0

results presented in the literature for thin and moderately thick plates, obtaining satisfactory
results.

The eigenvalues calculated by the Mindlin plate theory are smaller than those of Blocki
theory. That conclusion confirms the results presented by Niordson (1979).

In order to compare these theories the experimental test should be performed on a
thick circular plate or the eigenvalues of the frec vibration of a thick disc should be calculated
using the three-dimensional model of the plate.

Acknowledgement—1 would like to thank Dr Jacck Blocki for several helpful discussions of this work.
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